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Glossary

Assignment test: assigning individuals to the population that, based on their

expected multilocus genotype, is the most likely.

Bayesian likelihood approach: estimation of a normalized posterior probability

distribution from the product of the prior probability distribution and the

likelihood function.

Dispersal: in the ecological literature, the movement of individuals from one

genetic population (or birth place) into another.

Effective population size (Ne): the size of the ideal, panmictic population that

would experience the same loss of genetic variation through genetic drift as

the observed population.

Evolutionary significant units (ESUs): a group of conspecific populations that

has substantial reproductive isolation, which has led to adaptive differences so

that the populations represent a significant evolutionary component of the

species.

Gene flow (mNe): migration is estimated as gene flow in population genetics,

typically as the number of migrants per generation Nm, where N denotes the

effective population size of the population receiving the immigrant and m the

probability that a sampled individual is an immigrant.

Genetic markers: different types of genetic marker are used in population

genetic analyses aimed at delineating MUs, such as (i) the sequence of

nucleotides at a specific location in the genome; (ii) the number of

simple tandem repeat DNA sequences at a specific location in the genome; (iii)

different allozymes of a specific enzyme; and (iv) multi-locus DNA sequences,

where the presence or absence of a DNA sequence constitute a data point.

Management units (MUs): populations of conspecific individuals among which

the degree of connectivity is sufficiently low so that each population should be

monitored and managed separately [47].

Migration–drift equilibrium: when the rate of divergence in allele frequencies

among populations owing to random genetic drift equals the homogenization

in allele frequencies owing to migration.

m: the probability that an individual is an immigrant.

Panmixia: random mating among those individuals involved in breeding.

Random genetic drift: random changes in allele frequencies in populations

between generations owing to multinomial sampling of individuals and genes.

Stepping stone population model: gene flow occurs only between adjacent

populations, resulting in increasing genetic divergence with greater

geographical distance.

Wright–Fisher island population model: equal-sized ideal populations with

equal rates of gene flow among all possible pairs of populations. Wright’s FST

is expected to equal � 1
4mNeþ1

in this situation [17].

Wright’s FST: the most commonly used measure of genetic divergence among

populations, which estimates the decrease in genetic diversity owing to

population structure.
The identification of management units (MUs) is central
to the management of natural populations and is crucial
for monitoring the effects of human activity upon species
abundance. Here, we propose that the identification of
MUs from population genetic data should be based upon
the amount of genetic divergence at which populations
become demographically independent instead of the cur-
rent criterion that focuses on rejecting panmixia. MU
status should only be assigned when the observed esti-
mate of genetic divergence is significantly greater than a
predefined threshold value. We emphasize the need for a
demographic interpretation of estimates of genetic diver-
gence given that it is often the dispersal rate of individuals
that is the parameter of immediate interest to conserva-
tionists rather than the historical amount of gene flow.

Introduction
Management units (MUs; seeGlossary) are usually defined
as demographically independent populations whose
population dynamics (e.g. population growth rate) depend
largely on local birth and death rates rather than on
immigration. The identification of MUs is central to the
short-termmanagement and conservation of natural popu-
lations and is typically used to delineate entities for moni-
toring [1] and regulating the effects of human activity upon
the abundance of populations and species.

Given that MUs represent demographically isolated
units, their delineation requires an estimate of dispersal
rates among populations. Over the past decade or so, the
use of population analyses of genetic markers has
increased substantially as an indirect means of inferring
whether subpopulations constitute part of the same MU.
The criterion most commonly used to delineate MUs was
proposed more than a decade ago by Moritz, who defined
MUs as ‘. . .populations with significant divergence of allele
frequencies at nuclear or mitochondrial loci, regardless of
the phylogenetic distinctiveness of the alleles. . .’ [2]. The
wording ‘significant divergence’ has since been inferred to
mean the statistical rejection of panmixia, and continues to
be the yardstick used when designating MU status from
population genetic data (Box 1). This interpretation is
evident in several recent reviews dealing specifically with
the application of population genetic data to wildlife and
Corresponding author: Palsbøll, P.J. (Per.Palsboll@gmt.su.se).
Available online 18 September 2006.

www.sciencedirect.com 0169-5347/$ – see front matter � 2006 Elsevier Ltd. All rights reserve
fisheries management (e.g. Refs [3,4]) as well as in the
assessment of the performance of the statistics used to
define MUs (e.g. Ref. [5]). Here, we advocate basing the
delineation of MUs upon the amount of population genetic
divergence instead of simply the rejection of panmixia.

Delineation of MUs should be based upon the observed
estimate of population genetic divergence
Focusing on rejecting panmixia rather than on the amount
of population genetic divergence could misguide the
d. doi:10.1016/j.tree.2006.09.003
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Box 1. Management units in Scandinavian brown bear Ursus arctos

A series of papers describing the genetic differentiation of Scandina-

vian brown bears Ursus arctos provides an excellent example of using

genetic information to delineate MUs and the associated issues when

the delimiting criterion is not defined a priori. Four subpopulation

clusters (NN, NS, M and S, from north to south) were identified by the

geographical distribution of bears killed by hunters. mtDNA analysis

found two highly divergent haplotypes with a discrete geographical

distribution and a contact zone separating the S and three more

northern subpopulations [36]. Thus, it was proposed that the south-

ern and three more northern clusters of bears should be treated as

two evolutionarily significant units (ESUs).

Subsequent analysis of 19 microsatellite loci in the same indivi-

duals reached a different conclusion [37]. The null hypothesis of

panmixia was rejected for all pairwise comparisons with a high

degree of certainty (P < 0.001). In addition, these nuclear data gave no

indication of a break between the S and three northern subpopula-

tions. Rather, FST values between adjacent subpopulations were

estimated at �0.08 for all pairwise comparisons, except between the

nearby NN and NS subpopulation pairs, where FST was estimated at

0.015. These authors recommended that these bear populations

should be considered a single ESU, but divided into four separate

MUs because of the rejection of panmixia in all pairwise comparisons.

Subsequently, Manel et al. [38] reanalyzed the data of Waits et al.

[36] without using the a priori subpopulation designations based

upon geography. They found evidence for three subpopulations that

matched the three primary geographical clusters of individuals. The

NN and NS subpopulations were combined into a single subpopula-

tion and three MUs were defined (S, M and N). These results

demonstrate the importance of determining genetic structure from

the data, without presupposing a structure.

Tallmon et al. [39] later determined genotypes at the same 19

microsatellite loci as used above in samples taken �15 years after the

samples used by Waits et al. [36]. These authors were interested

primarily in the conservation status of the S subpopulation. They

estimated Ne of this subpopulation at �45, and the number of

immigrants into this subpopulation at �0.5, yielding a dispersal rate

of �1%. They concluded that this subpopulation was demographi-

cally isolated, but that the amount of gene flow into it was sufficient to

avoid inbreeding depression

The Scandinavian brown bear studies serve as an excellent (and

common) case of how the conclusions (in terms of ESU and MU status)

change as different kinds of analysis population genetic assessment are

conducted, even when the same data are used. However, in none of the

studies was the uncertainty of the degree of genetic divergence

estimated. Perhaps more importantly, the delimiting criteria were

not defined a priori, and only in the study by Tallmon et al. [39] was

the genetic estimate of migration related to the level of demographic

(as well as genetic) independence of the target population.
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delineation of MUs when the amount of dispersal is low,
but panmixia cannot be rejected owing to low statistical
power [6] (Box 2, Figure Ia), or when the degree of statis-
tical power is sufficient to reject panmixia even if the
dispersal rate is such that populations are demographi-
cally correlated [7] (Box 2, Figure Ib). In the first case,
populations will erroneously be assigned to the same MU,
which might result in local extinction [8]. In the second
case, populations that should be monitored and managed
as a singleMUwill be divided into multiple MUs, resulting
in an inflated allocation of conservation resources. This is
likely to result in further restrictions of those human
activities that affect local abundance, such as hunting or
fishing, thereby affecting the livelihoods of those who
depend on the target species [9] (Box 1; Box 2, Figure Ib).

These problems could be avoided if the focus is shifted
away from panmixia to the threshold level of dispersal
below which populations should be assigned to different
MUs. The issue then becomes how divergent population
allele frequencies are, rather than the rejection of pan-
mixia. Once the level of population genetic divergence that
corresponds to the threshold level of dispersal has been
defined, population genetic analysis could then be used to
assess whether the observed estimate of genetic divergence
is significantly higher or lower than the predefined thresh-
old value; the populations might then be assigned to
different or the same MU, respectively (Box 2, Figure Ib;
Box 3). If a population genetic assessment fails to produce
an observed estimate of population genetic divergence that
does not differ significantly from the predefined threshold
value, the question of MU status remains unresolved (Box
2, Figure Ib).

Basing the delineation of MUs on an estimate of
the amount of population genetic divergence (which is,
in part, a function of the dispersal rate among MUs)
facilitates the development of specific criteria for
delineating MUs suited to the specific target species and
www.sciencedirect.com
relevant conservation objectives (Box 3). Incorporating the
uncertainty of the observed estimate of population genetic
divergence into the criteria used to delineate MUs is
important as it informs the involved researchers and
managers whether the MU status can be viewed as
resolved (Box 2, Figure Ib).

When a population genetic analysis is unable to
resolve the MU status of a population, the population
genetic data already collected could be used (by way of
computer simulations [10]) to assess how much more
genetic data is needed to obtain a sufficiently precise
estimate of the population genetic divergence to resolve
the MU status fully. In cases where insufficient resources
are available to collect such data, the existing data could
be used to estimate the probability of each hypothesis
(i.e. same or different MUs) if a Bayesian likelihood
approach (Box 2, Figure Ib) is used to infer the amount
of gene flow [11,12].

How genetically divergent should different MUs be?
At what amount of population genetic divergence
should populations be assigned to different MUs? A ‘one
size fits all’ answer is not possible given that it depends
upon the specific conservation context, as well as on the
biological characteristics and population history of the
target species [11,13–15]. More importantly, as Waples
and Gaggiotti [7] point out, there is currently no general
framework for determining at which dispersal rate popu-
lations becomes demographically correlated. Work by
Hastings [16] suggests that populations become demogra-
phically correlated at dispersal rates above 10%. In such
cases, populations should be assigned to different MUs if
the rate of dispersal among populations is <10%. If a
population genetic approach is used to delineate MUs,
then it will be necessary to determine what amount of
population genetic divergence corresponds to the relevant
dispersal rate (e.g. 10%).



Box 2. Statistical power and uncertainty in delineation of MUs from population genetic data

Power to reject panmixia

Figure Ia illustrates how the statistical power to reject panmixia (at the

0.05 level) changes with the amount of genetic data. The X-axis

denotes the number of genetic markers analyzed in each sample, and

the Y-axis the proportion (of 1,000 simulated datasets for each data

point) of tests when panmixia was rejected (i.e. P < 0.05). Triangles,

squares and circles denote samples sizes of 200, 100 and 50

individuals, respectively.

The simulated data were generated using the coalescent-based

program SimCoal [10]. In each case, a strict single step mutation

model was used, mimicking the mutation mode of microsatellite loci.

In each case, 1000 pairs of populations were simulated, with effective

population sizes (Ne) of 1000 individuals and migration rate (m) of 0.2.

The probability that population allele frequencies distributions in the

two samples were collected from the same panmictic population was

estimated using a permutation-based x2 test [40].

Even though the dispersal rate (here set at 20%) was well above

the 10% proposed by Hastings [16] as the level of dispersal at which

populations becomes demographically correlated (and thus should

be assigned to the same MU), a large proportion of the population

genetic assessments resulted in panmixia rejection. For large

sample sizes (i.e. 100 or 200 individuals per population), between

10 to 45% of the assessments resulted a panmixia rejection and,

hence, an erroneous assignment of the two populations to different

MUs.

Using a Bayesian approach

Figure Ib depicts the posterior probability distribution of the

parameter mNe estimated [11] from simulated data from two putative

MUs; at five (black line) and 15 (gray line) loci. The vertical dashed

line indicates the location of the predefined threshold value of mNe.

Because a Bayesian likelihood approach is used, the relative

probabilities of one or two MUs (given a threshold value for mNe)

can be inferred. In this case, �89% and �96% of the posterior

probability distribution estimated from five and 15 loci, respectively,

is below the threshold value. Hence, although the assessment based

upon five loci fails to resolve the MU assignment, the Bayesian

likelihood approach used enables a probabilistic statement of each of

the two hypotheses; one or two MUs. Here, the probability of mNe

being larger than the threshold value was estimated at 0.11 (one

MU);conversely, the probability of the alternate model (two different

MUs) is 0.89. This approach is useful when resources are insufficient

to collect and analyze additional data to resolve fully the MU status, or

immediate management action is called for.

Figure I.
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Assuming selective neutrality and equilibrium
conditions (referred to as migration–drift equilibrium),
the amount of genetic divergence among populations is a
function of the number of migrants per generation (also
termed ‘gene flow’) rather than the dispersal rate per se.
The number of migrants is usually estimated as mNe,
which is the product of the effective population size (Ne)
and the probability that an individual is a migrant (m).
Consequently, a migration rate of, for instance, 10% will
result in amuch higher degree of genetic divergence among
populations with Nes of 1000 compared with population
with Nes of 100. The rate of gene flow is usually scaled to
either the Ne (as above) or the mutation rate [11]. Given
that the size of these two parameters is usually unknown,
it is difficult to translate gene flow into dispersal rates,
which is the parameter of interest for determining whether
populations are demographically correlated (i.e. part of the
same or different MUs). In addition, most of the current
approaches used to estimate the degree of genetic diver-
gence among populations (such as Wright’s FST [17]) use
the relative degree of genetic diversity within and among
populations to infer mNe. However, as mNe becomes large
(>5–10), statistical uncertainty increases, resulting in
either poor statistical precision [9,18,19] or erroneous
estimates [20]. This inverse correlation between statistical
precision and migration rates implies that it will require
www.sciencedirect.com
comparatively few data to reject high migration rates, as
would be the case when the sampled populations constitute
multiple MUs.

Finally, dispersal rate and gene flow are two different
entities that might differ substantially. An extreme
example is the study of North Atlantic pilot whales
Globicephala melanus by Amos and co-workers [21]. The
study revealed that male pilot whales stay with their
maternal pod even after they become sexually mature,
but mature males do not breed with the females in their
resident pod. In this case, the degree of dispersal from the
level of genetic divergence among pilot whale pods would
be misleading, and dispersal could be zero even at very
high levels of gene flow. Dispersal rates might be high
among populations, but the rate of gene flow could bemuch
lower if immigrants are incapable of contributing success-
fully to the local gene pool.

For all these reasons, to define an appropriate threshold
level of population genetic divergence at which populations
should constitute separate MUs, it will be necessary to
establish the relationship between the demographic char-
acteristics and population genetic dynamics of the target
species. Given the lack of a general analytical framework
that combines the demographic and genetic characteristic of
populations and their individuals [7], such correlations
are currently best determined using individual-based



Box 3. Defining MUs of sockeye salmon using the revised

criterion

Salmon on the west coast of North America are often harvested in

mixed stock fisheries that contain fish from many local reproductive

populations that are returning to spawn in their natal streams.

Fisheries managers have long recognized the importance of

managing local populations individually so that an adequate

number of individuals from each local population is allowed to

reproduce to ensure the persistence of the local populations (i.e.

MUs) that make up fished salmon stock [41]. Up to 40 million

sockeye salmon Oncorhynchus nerka are captured each year in

Bristol Bay, Alaska [42]. These salmon are returning to spawn at

several hundred natal sites in streams, rivers and lakes that drain

into Bristol Bay. Lake Clark is one of two large lake systems in the

Kvichak River system, which has historically been the largest

contributor of sockeye salmon to the Bristol Bay fishery.

Ramstad et al. [43] analyzed �100 sockeye salmon from 11

spawning sites throughout the Lake Clark drainage at 11 micro-

satellite loci to determine whether these sites are demographically

isolated. Approximately 1–5000 fish spawn in each of these sites

annually [44]. Waples [45] showed that, for Pacific salmon, Ne is

approximately equivalent to the effective number of breeders per

year x the average age of reproduction (approximately four years for

Lake Clark sockeye salmon). In addition, the Ne:census population

size ratio in Pacific salmon is �0.2 [46]. Therefore, the Ne for each of

the Lake Clark spawning sites is �1000 or slightly greater. Using the

criterion of at least 10% exchange [16], these sites would be

demographically isolated if they exchanged <100 or so adults. This

corresponds to an FST of 0.0025 under a Wright–Fisher island

population model. Therefore, we would conclude that these

spawning sites constitute separate MUs if their genetic divergence

exceeds FST = 0.0025.

The overall value of FST among these sites is �0.018 (95% CI

0.010–0.029), greater than our threshold of 0.0025. This corresponds

to �15 migrants per generation with the Wright–Fisher island

population model. However, much of this divergence results from

one sample site that tended to show greater pairwise divergence

than the other ten sites. If we exclude this site, the overall value of

FST among Lake Clark sites is �0.007 (95% CI 0.004–0.010). This is

still at least twice as great as our threshold of 0.0025. Therefore, we

conclude that these 11 spawning sites are demographically isolated

and should be considered separate MUs.
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population computer models that enable the joint genera-
tion of demographic and genetic data. Currently, there are
only a few computer simulation programs [22–24] that
combine demographic and genetic modeling, by which the
expected level of population genetic divergence might
be estimated under a specific demographic model and
dispersal rate.

This crucial link between biologically realistic
demographic models and population genetic estimation
requires considerable development. Current population
genetic inferences rely upon highly idealized and simplistic
population models that do not apply to most natural popu-
lations [25]. It is important to know when the conclusions
from these models are robust with regard to deviations
from the underlying assumptions. The sensitivity of biolo-
gically feasible deviations from the underlying population
genetic model should be assessed with computer simula-
tions before making firm recommendations.

What population genetic divergence measure
should be used to delineate MUs?
Inferring the rate of gene flow among putative MUs from
the level of genetic variation within and among population
samples relies heavily upon several highly simplifying
www.sciencedirect.com
model assumptions, many of which are unlikely to be
met in natural populations [25]. The most basic assump-
tion is that of migration–drift equilibrium, which assumes
constant population sizes and migration rates over recent
evolutionary time, as well as non-overlapping generations
and the absence of natural selection. Although some recent
developments in data analyses of population genetic data
enable estimation of mNe under non-equilibrium condi-
tions, these approaches are either limited to pairwise
comparisons [26] or ignore the effect of population diver-
gence time and enable only a simple exponential change in
population size [27]. Estimates of gene flow can be severely
biased owing to gene flow from other populations that are
not included in the estimation [28].

Many standard population genetic methods yield
estimates of population divergence that are the average
over recent evolutionary time, rather than the current rate
of gene flow. In definingMUs, the current rate of dispersal
is the measure of interest [29]. Several recent experimen-
tal and analytical advances in molecular ecology have
been directed towards estimating dispersal rates from
genetic data that apply to the last few generations. Such
‘real time’ estimates of dispersal could be obtained by
genetic tagging and recapture of individuals [30], or by
the distribution of close relatives among the collected
samples identified from genetic analyses of kinship
[31,32]. Population allele frequencies could also be used
to assign individuals to specific populations based on
assignment tests [33]. Some assignment-based methods
divide the collected samples into clusters of individuals,
thereby circumventing the need for a subjective a priori
partition of collected samples. These methods are parti-
cularly useful when the overall knowledge regarding the
population structure is poor. However, after samples have
been partitioned using such an assignment approach, the
degree of genetic divergence (and its uncertainty) among
the resulting clusters (each assumed to be a separate
population) needs to be estimated before a MU status
can be assigned to each cluster.

Individual-based assignment methods can identify
descendants of immigrants, which will appear to have
‘hybridized genomes’, with one-half of their genome
originating from their resident population and the other
from the native population of the immigrant parent.
Wilson and Rannala [12] recently developed a Bayesian
likelihood approach that uses this aspect to estimate
recent dispersal rates (m) from population samples of
multi-locus genotypes.

Finally, there are also populations that are structured
in a manner that makes any MU delineation arbitrary.
One example is the biologically realistic and probably
common ‘Stepping Stone’ population model. In this case,
an assessment of genetic connectivity might suggest that
the two geographically most distant populations should
each be assigned to separate MUs, but that any geogra-
phically intervening populations might be assigned to
either of the two MUs (Box 1).

Conclusions
The revised procedure proposed here requires a better
understanding of the interaction between population
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genetic and demographic parameters and their analysis.
Until the appropriate analytical framework is developed,
the most efficient manner to assess the effect of different
demographic parameter values upon the geneticmakeup of
putative MUs is to use computer simulations.

The procedure that we propose here to delineate MUs is
also applicable to non-genetic measures of population con-
nectivity from where a point estimate and its associated
uncertainty can be obtained, such as traditional mark–
recapture data [34] or even the degree of similarity of
morphological traits [35]. The only requirement is that
the statistic used in the assessment can be related the
relevant demographic processes (usually dispersal).

Our proposal to define MUs upon the amount of popula-
tion genetic divergence (as opposed to the ability to reject
panmixia) is general, but yet flexible so that the threshold
values of population genetic divergence can be tailored
specifically to each particular biological and conservation
context. Perhaps equally important is that our proposal
requires each assessment to define explicitly the demo-
graphic assumptions and the manner in which they are
translated into a measure of population genetic diver-
gence. The need to define the delimiting criteria a priori
makes the process of assigning MU status to the target
populations both transparent and explicit, and readily
amendable to changes as new insights are obtained.
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